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Introduction

We show how to associate a flat connection over a vector bundle E on a con-
nected complex manifold X to a local system on X. Furthermore we associate to a
representation of the fundamental group π1(X, x0) a local system. Then we close
the circle showing a bijective correspondence between local system, representa-
tions of the fundamental group and flat connections. Finally we show that there
is a bijective correspondence between Hodge structure on a Q-vector space H and
representations of C∗ over HR = H ⊗Q R.
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CHAPTER 1

Local Systems, Representations and Flat Vector
Bundles

Let X be a connected complex manifold.

DEFINITION 1.1. A local system on X is a locally constant sheaf F on X, i.e.
for any x ∈ X there is an open neighborhood Ux of x such that F|Ux is the constant
sheaf.

Recall that a sheaf E on X is constant if for any x ∈ X the stalkFx is isomorphic
to Cn for a fixed n.
Let L → X be a local system on X, and fix a base point x0 ∈ X. Let

γ : [0, 1] → X, γ(0) = x0, γ(1) = x1,

be a curve in X. The pull-back γ∗L to [0, 1] is locally constant and hence constant.
In this way we get a C-vector space isomorphism

fγ : Lx0 → Lx1 ,

which depends only on the homotopy class of γ. If we take a loop based at x0 we
get a map

ρ : π1(X, x0) → GL(Lx0) ∼= GL(n, C),
that is a group homomorphism and hence defines a representation of π1(X, x0) on
Lx0 .

1.1. Flat Bundles

Let E → X be a holomorphic vector bundle. A holomorphic connection on E
is a C-linear map

∇ : OE(U) → Ω1(U)⊗OE(U) = Ω1
E(U),

where U is an open subset of X, and such that

∇( f · σ) = d f ⊗ σ + f · ∇σ, f ∈ O(U), σ ∈ OE(U).

If σ1, ..., σd is a local holomorphic coframe of OE(U), we have

∇σj =
d

∑
i=1

θi,jσi,

the holomorphic forms θi,j ∈ Ω1(U) are called connection forms.

DEFINITION 1.2. Let E → X be a holomorphic vector bundle with a holo-
morphic connection ∇. A section σ ∈ OE(U) is said to be flat if ∇σ = 0. The
connection ∇ is said to be flat if there exists a trivializing cover for E such that the
corresponding coframe consists of flat section.
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6 1. LOCAL SYSTEMS, REPRESENTATIONS AND FLAT VECTOR BUNDLES

1.1.1. Locally free Shaves and Vector Bundles. Let E → X be a holomorphic
vector bundle of rank n on a complex manifold X. For any open subset U ⊆ X we
can consider the OX(U)-module Γ(U, E) of holomorphic section of E on U. The
assignment U 7→ Γ(U, E) gives a sheaf of OX-module on X that is locally free of
rank n.
Conversely let F be a locally free sheaf of rank n on X. Let {Ui} be an open
cover of X on which F trivializes. For each non trivial intersection Ui ∩Uj = Ui,j
we have two isomorphisms FUi → O⊕n

X and FUi → O⊕n
X and by restriction two

different isomorphisms gi : FUi → O⊕n
X and gj : FUj → O⊕n

X . Then we have an

automorphism gi,j = gjg−1
i of FUi,j

∼= O⊕n
X|Ui,j

. Then we can identify gi,j with an

n× n matrix with regular functions as entries. We construct a vector bundle

E =
⋃

Ui ×Cn/ ∼,

where (x, v) ∼ (y, w) ⇐⇒ x = y ∈ Ui,j, w = gi,j(x)(v). Then E is a vector bundle
of rank n on X. Note that the transition functions of E arise from a coframe of
F . We have established the following bijective correspondence that is actually an
equivalence of categories.(

Rank n Vector Bundle on X
up to isomorphism

)
!

(
Locally f ree o f rank n on X

up to isomorphism

)
.



CHAPTER 2

The Equivalence Theorem

Our aim is to prove that there is a bijective correspondence(
Local Systems on X
up to isomorphism

)
!

(
Representations o f π1(X)

up to isomorphism

)
.

A subset K of X is said to be good for the sheaf L if it is connected and there is an
open subset U containing K such that FU is constant.

LEMMA 2.1. Let K be a good set for L, and let x1, ..., xn ∈ K be points. Then there
is a natural isomorphism Lxi → Lxj for any i, j = 1, ..., n. Furthermore for any i, j, k the
composition Lxi → Lxj → Lxk coincides with Lxi → Lxk .

PROOF. Let U be an open subset containing K on which L is constant. Then
the natural maps L(U ) → Lxi , s → sxi are all isomorphisms. So we get isomor-
phisms Lxi → L(U ) → Lxj that clearly are compatible. ♠

THEOREM 2.2. There is a bijective correspondence between the set of local systems
on X up to isomorphism and the set of representations of π1(X) up to isomorphism.

PROOF. We dived the proof in two steps.

(1) (Local System → Representation) Let γ : [0, 1] → X be a curve, γ(0) =
x0, γ(1) = x1. We can cover X by good open sets U0, ...,Un such that each
Ui ∩ U| 6= ∅ for any i, j. Furthermore we can find a partition 0 ≤ a0 <

a1 < ... < an ≤ 1 such that γ([ai, ai+1]) ⊆ Ui. Then for any i the pullback
of L to [ai, ai+1] is locally constant and hence constant. So we get an
isomorphism Lγ(ai) → Lγ(ai+1). By composing these isomorphisms we
get an ργ isomorphism Lγ(0) → Lγ(1).
The isomorphism ργ appears to depend from the partition 0 ≤ a0 <
a1 < ... < an ≤ 1. But if we add a new point b say between ai and
ai+1, by lemma 2.1 the composition Lai → Lb → Lai+1 coincides with
Lai → Lai+1 . So our construction does not change.
Suppose now that γ and γ

′
are homotopic curves in X, and let H : [0, 1]×

[0, 1] → X be an homotopy. Then H(t, 0) = γ(t) and H(t, 1) = γ
′
(t). Let

0 = a1 < ... < an = 1 and 0 = b1, ..., bm = 1 be partitions of [0, 1] such that
H([ai, ai+1]× [bj, bj+1]) is good. Let γj : [0, 1] → X be the curve γj(t) =
H(t, bj), in particular γ0 = γ and γm = γ

′
. To prove that ρ(γ) = ρ(γ

′
) it

suffices to prove that ρ(γj) = ρ(γj+1) for any j. Consider the following
diagram
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8 2. THE EQUIVALENCE THEOREM

L|H(0,bj+1) → L|H(a1,bj+1) → L|H(a2,bj+1) → . . . . . . → L|H(1,bj+1)
‖ l l ‖

L|H(0,bj) → L|H(a1,bj) → L|H(a2,bj) → . . . . . . → L|H(1,bj)

Since H([ai, ai+1] × [bj, bj+1]) is good for any i, j, any small square
diagram commutes. Furthermore ρ(γj) is the composition of all the maps
along the bottom and ρ(γj+1) is the composition of all the maps along the
top, we conclude that ρ(γj) = ρ(γj+1).
In particular for x0 = x1 for any loop γ bases on x0 we get a well defined
linear map ρ(γ) : Lx0 → Lx0 . Clearly the map

ρ : π(X, x0) → GL(Lx0) ∼= GL(n, C), γ 7→ ρ(γ),

is a morphism of groups, and thus defines a representation of the funda-
mental group π1(X, x0) with representation space Lx0 .

(2) (Representation → Local System) Let ρ : π1(X, x0) → GL(n, C) be a rep-
resentation of the fundamental group. Let F : X̃ → X be the universal
covering of X. The fundamental group acts on X̃ by deck transforma-
tions. We can define a holomorphic vector bundle by

E = X̃ ×Cn/ ∼,

where the relation ∼ is given by

(b̃1, v1) ∼ (b̃2, v2) ⇐⇒ b2 = σ(b1), v2 = ρ(σ−1)(v1), σ ∈ π1(X, x0).

In other words, E is the vector bundle associated the the principal bundle
over X with structure group π1(X, x0) by the representation ρ. Let U ⊆ X
be an open subset such that F−1(U ) is a disjoint union of open sets Wj ⊆
X̃ biholomorphic to U . Let us denote by Fj = F|Wj

. Given any vector
v ∈ Cn, for any choice of j we have a local section

v̄(z) = (F−1
j (z), v), z ∈ U ,

on U . We call v̄ a constant section of the bundle E. We denote by L the
sheaf of locally constant section E. Clearly L is a locally constant sheaf
i.e. a local system.

♠

EXAMPLE 2.3. Let X = ∆∗ = {z ∈ C | 0 < |z| < r}, and suppose, for sim-
plicity that we have scaled the variable so that r > 1. For t0 = 1 ∈ ∆∗ we have
π1(∆∗, t0) ∼= Z, after choosing as generator a loop around the origin and oriented
clockwise. Consider the representation

ρ : π1(∆∗, t0) → GL(2, C), ρ(n) =
(

1 n
0 1

)
.

Recalling the upper half plane H is the universal covering of ∆∗, we have E ∼=
H ×C2/ ∼.



2.2. CONCLUSIONS 9

2.1. Local Systems and Flat Bundles

In this section we establish a bijective correspondence(
Local Systems on X
up to isomorphism

)
!

(
Flat Bundles on X
up to isomorphism

)
.

Suppose that E → X is a vector bundle associated to a local system L. Then E
admits a trivializing covering relative to which the transition function are constant.
Let σ1, ..., σd be the coframe arising from the trivializing cover, since L is a local
system we can define a connection with connection forms θi,j = 0, i.e.

∇(∑ fiσi) = ∑ d fi ⊗ σi + ∑ fi∇σi = ∑ d fi ⊗ σi.

By definition there exists a trivializing cover for which the corresponding coframe
consists of flat sections i.e. ∇σj = ∑ θi,j ⊗ σj = 0 for any j = 1, ..., d. In this way we
associate a flat connection to a local system.
Conversely if E → X is a vector bundle with a flat connection ∇. Then the tran-
sition function corresponding to covering by open sets with flat coframes must be
constant. Indeed from σj = ∑ gi,jσi we get 0 = ∇σj = ∑(dgi,j ⊗ σi + gi,j∇σi) =
∑ dgi,j ⊗ σi, so dgi,j = 0 and gi,j is constant. Consequently we can define a local
system of constant sections i.e. the flat sections.

2.2. Conclusions

Summarizing the results we have bijective correspondences(
Flat Bundles on X
up to isomorphism

)
!

(
Local Systems on X
up to isomorphism

)
!

(
Representations o f π1(X)

up to isomorphism

)
,

that actually are equivalences between the following three categories
(1) Local Systems over a connected, complex manifold X,
(2) Finite dimensional representations of the fundamental group π1(X, x0),
(3) Holomorphic bundles E → X with a flat connection ∇.

2.2.1. The Gauss-Manin Connection. Let ϕ : χ → B be an analytic family
of compact complex manifolds, where ϕ is a proper holomorphic submersion. By
Erhesmann theorem χ is locally trivial as smooth manifold, and it is trivial if B
is simply connected. Let b0 ∈ B be a point, and let Xb0 = X = ϕ−1(b0) be the
corresponding fiber. Consider the diffeomorphism

F : χ → B× X,

and let G = F−1 be its inverse. For any curve γ : [0, 1] → B such that γ(0) = b0
and γ(1) = b1 we get a diffeomorphism fγ : Xb0 → Xb1 . This give rise to an
isomorphism

f ∗γ : H j(Xb1 , k) → H j(Xb0 , k),
where k = Z, Q, R, C. Since these isomorphisms depends only on the homotopy
class of γ we get a representation π1(B, b0) → End(H j(Xb0 , k)). We denote by
Hj → B the holomorphic vector bundle assiociated to this representation. The
fiber of Hj → B over b ∈ B is isomorphic to H j(Xb, C), and the corresponding
connection is called the Gauss-Manin Connection.



CHAPTER 3

Hodge Structures and Representations

In this chapter we state a bijective correspondence between(
Rational Hodge Structures o f weight k

over a Q− vector space H

)
!

(
Algebraic Representations on the
R− vector space HR = H ⊗Q R

)
.

DEFINITION 3.1. A rational Hodge structure of weight k is a Q-vector space H
with a direct sum decomposition

HC = H ⊗Q C =
⊕

p+q=k

Hp,q,

such that Hp,q = Hq,p.

PROPOSITION 3.2. There is a bijective correspondence between rational Hodge struc-
tures of weight k on a rational vector space H and algebraic representations ρ : C∗ →
GL(HR), where HR = H ⊗Q R.

PROOF. Let HC =
⊕

p+q=k Hp,q be a rational Hodge structure. For α = ∑ αp,q ∈
HR ⊆ HC we define

ρ(z)(α) = ∑(zpzq)αp,q.
Note that ρ(zw)(αp,q) = ((zw)pzwq)αp,q = (zpzq)(wpwq)αp,q = (ρ(z) ◦ ρ(w))αp,q.
Furthermore if α ∈ HR then ρ(z)α is still real. So the map ρ : C∗ → GL(HR) is
well define and it is a representation. Clearly it is algebraic.
Conversely suppose to have a representation ρ : C∗ → GL(HR). Let ρC : C∗ →
GL(HC) be the C-linear extension of ρ, and consider the spaces

Hp,q = {v ∈ HC | ρC(z)(v) = (zpzq)v, ∀ z ∈ C∗}.

Since C∗ is abelian, the representation ρC splits into a direct sum of one-dimensional
representations ri : C∗ → C∗. To show that HC =

⊕
Hp,q, we have to ar-

gue that every one-dimensional representation ri that might occur is of the form
ri(z) = zpzq with p + q = k. Now the hyphotesis that ρ is algebraic comes in.
We can write z = x + iy, one can identify C∗ with the subgroup of GL(2, R) of

all matrices of the form
(

x y
−y x

)
. A representation ρ : C∗ → GL(HR) is al-

gebraic if ρ

(
x y
−y x

)
is a matrix whose entries are polynomials in x, y, and the

inverse of the determinant 1
x2+y2 . Hence ri(z) must be a polynomial in z, z, and zz,

henceforth of the form zpzq for some p, q with p + q = k. ♠
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