Some Connections between Representation Theory and Complex Geometry

Alex Massarenti

SISSA, VIA BONOMEA 265, 34136 TRIESTE, ITALY *E-mail address*: alex.massarenti@sissa.it

Contents

Introduction	4
Chapter 1. Local Systems, Representations and Flat Vector Bundles1.1. Flat Bundles1.1.1. Locally free Shaves and Vector Bundles	5 5 6
Chapter 2. The Equivalence Theorem	7
2.1. Local Systems and Flat Bundles	9
2.2. Conclusions	9
2.2.1. The Gauss-Manin Connection	9
Chapter 3. Hodge Structures and Representations	10

Introduction

We show how to associate a flat connection over a vector bundle *E* on a connected complex manifold *X* to a local system on *X*. Furthermore we associate to a representation of the fundamental group $\pi_1(X, x_0)$ a local system. Then we close the circle showing a bijective correspondence between local system, representations of the fundamental group and flat connections. Finally we show that there is a bijective correspondence between Hodge structure on a Q-vector space *H* and representations of \mathbb{C}^* over $H_{\mathbb{R}} = H \otimes_{\mathbb{Q}} \mathbb{R}$.

CHAPTER 1

Local Systems, Representations and Flat Vector Bundles

Let *X* be a connected complex manifold.

DEFINITION 1.1. A local system on *X* is a locally constant sheaf \mathcal{F} on *X*, i.e. for any $x \in X$ there is an open neighborhood \mathcal{U}_x of *x* such that $\mathcal{F}_{|\mathcal{U}_x|}$ is the constant sheaf.

Recall that a sheaf \mathcal{E} on X is constant if for any $x \in X$ the stalk \mathcal{F}_x is isomorphic to \mathbb{C}^n for a fixed n.

Let $\mathcal{L} \to X$ be a local system on X, and fix a base point $x_0 \in X$. Let

$$\gamma: [0,1] \to X, \ \gamma(0) = x_0, \ \gamma(1) = x_1,$$

be a curve in X. The pull-back $\gamma^* \mathcal{L}$ to [0, 1] is locally constant and hence constant. In this way we get a \mathbb{C} -vector space isomorphism

$$f_{\gamma}:\mathcal{L}_{x_0}\to\mathcal{L}_{x_1},$$

which depends only on the homotopy class of γ . If we take a loop based at x_0 we get a map

$$p: \pi_1(X, x_0) \to GL(\mathcal{L}_{x_0}) \cong GL(n, \mathbb{C}),$$

that is a group homomorphism and hence defines a representation of $\pi_1(X, x_0)$ on \mathcal{L}_{x_0} .

1.1. Flat Bundles

Let $E \to X$ be a holomorphic vector bundle. A holomorphic connection on *E* is a **C**-linear map

$$\nabla: \mathcal{O}_E(U) \to \Omega^1(U) \otimes \mathcal{O}_E(U) = \Omega^1_E(U),$$

where U is an open subset of X, and such that

$$\nabla(f \cdot \sigma) = df \otimes \sigma + f \cdot \nabla \sigma, \quad f \in \mathcal{O}(U), \, \sigma \in \mathcal{O}_E(U).$$

If $\sigma_1, ..., \sigma_d$ is a local holomorphic coframe of $\mathcal{O}_E(U)$, we have

$$\nabla \sigma_j = \sum_{i=1}^d \theta_{i,j} \sigma_i,$$

the holomorphic forms $\theta_{i,j} \in \Omega^1(U)$ are called connection forms.

DEFINITION 1.2. Let $E \to X$ be a holomorphic vector bundle with a holomorphic connection ∇ . A section $\sigma \in \mathcal{O}_E(U)$ is said to be flat if $\nabla \sigma = 0$. The connection ∇ is said to be flat if there exists a trivializing cover for *E* such that the corresponding coframe consists of flat section.

1.1.1. Locally free Shaves and Vector Bundles. Let $E \to X$ be a holomorphic vector bundle of rank n on a complex manifold X. For any open subset $U \subseteq X$ we can consider the $\mathcal{O}_X(U)$ -module $\Gamma(U, E)$ of holomorphic section of E on U. The assignment $U \mapsto \Gamma(U, E)$ gives a sheaf of \mathcal{O}_X -module on X that is locally free of rank n.

Conversely let \mathcal{F} be a locally free sheaf of rank n on X. Let $\{U_i\}$ be an open cover of X on which \mathcal{F} trivializes. For each non trivial intersection $U_i \cap U_j = U_{i,j}$ we have two isomorphisms $\mathcal{F}_{U_i} \to \mathcal{O}_X^{\oplus n}$ and $\mathcal{F}_{U_i} \to \mathcal{O}_X^{\oplus n}$ and by restriction two different isomorphisms $g_i : \mathcal{F}_{U_i} \to \mathcal{O}_X^{\oplus n}$ and $g_j : \mathcal{F}_{U_j} \to \mathcal{O}_X^{\oplus n}$. Then we have an automorphism $g_{i,j} = g_j g_i^{-1}$ of $\mathcal{F}_{U_{i,j}} \cong \mathcal{O}_X^{\oplus n}$. Then we can identify $g_{i,j}$ with an $n \times n$ matrix with regular functions as entries. We construct a vector bundle

$$E = \bigcup U_i \times \mathbb{C}^n / \sim,$$

where $(x, v) \sim (y, w) \iff x = y \in U_{i,j}, w = g_{i,j}(x)(v)$. Then *E* is a vector bundle of rank *n* on *X*. Note that the transition functions of *E* arise from a coframe of \mathcal{F} . We have established the following bijective correspondence that is actually an equivalence of categories.

$$\left(\begin{array}{c} Rank \ n \ Vector \ Bundle \ on \ X \\ up \ to \ isomorphism \end{array}\right) \longleftrightarrow \left(\begin{array}{c} Locally \ free \ of rank \ n \ on \ X \\ up \ to \ isomorphism \end{array}\right).$$

CHAPTER 2

The Equivalence Theorem

Our aim is to prove that there is a bijective correspondence

 $\begin{pmatrix} \text{Local Systems on } X \\ up \text{ to isomorphism} \end{pmatrix} \longleftrightarrow \begin{pmatrix} \text{Representations of } \pi_1(X) \\ up \text{ to isomorphism} \end{pmatrix}.$

A subset *K* of *X* is said to be good for the sheaf \mathcal{L} if it is connected and there is an open subset \mathcal{U} containing *K* such that $\mathcal{F}_{\mathcal{U}}$ is constant.

LEMMA 2.1. Let K be a good set for \mathcal{L} , and let $x_1, ..., x_n \in K$ be points. Then there is a natural isomorphism $\mathcal{L}_{x_i} \to \mathcal{L}_{x_j}$ for any i, j = 1, ..., n. Furthermore for any i, j, k the composition $\mathcal{L}_{x_i} \to \mathcal{L}_{x_k} \to \mathcal{L}_{x_k}$ coincides with $\mathcal{L}_{x_i} \to \mathcal{L}_{x_k}$.

PROOF. Let \mathcal{U} be an open subset containing K on which \mathcal{L} is constant. Then the natural maps $\mathcal{L}(\mathcal{U}) \to \mathcal{L}_{x_i}$, $s \to s_{x_i}$ are all isomorphisms. So we get isomorphisms $\mathcal{L}_{x_i} \to \mathcal{L}(\mathcal{U}) \to \mathcal{L}_{x_i}$ that clearly are compatible.

THEOREM 2.2. There is a bijective correspondence between the set of local systems on X up to isomorphism and the set of representations of $\pi_1(X)$ up to isomorphism.

PROOF. We dived the proof in two steps.

(1) (Local System → Representation) Let γ : [0,1] → X be a curve, γ(0) = x₀, γ(1) = x₁. We can cover X by good open sets U₀, ..., U_n such that each U_i ∩ U_i ≠ Ø for any *i*, *j*. Furthermore we can find a partition 0 ≤ a₀ < a₁ < ... < a_n ≤ 1 such that γ([a_i, a_{i+1}]) ⊆ U_i. Then for any *i* the pullback of L to [a_i, a_{i+1}] is locally constant and hence constant. So we get an isomorphism L_{γ(a_i)} → L_{γ(a_{i+1})}. By composing these isomorphisms we get an ρ_γ isomorphism L_{γ(0)} → L_{γ(1)}.

The isomorphism ρ_{γ} appears to depend from the partition $0 \leq a_0 < a_1 < ... < a_n \leq 1$. But if we add a new point *b* say between a_i and a_{i+1} , by lemma 2.1 the composition $\mathcal{L}_{a_i} \to \mathcal{L}_b \to \mathcal{L}_{a_{i+1}}$ coincides with $\mathcal{L}_{a_i} \to \mathcal{L}_{a_{i+1}}$. So our construction does not change.

Suppose now that γ and γ' are homotopic curves in *X*, and let $H : [0,1] \times [0,1] \to X$ be an homotopy. Then $H(t,0) = \gamma(t)$ and $H(t,1) = \gamma'(t)$. Let $0 = a_1 < ... < a_n = 1$ and $0 = b_1, ..., b_m = 1$ be partitions of [0,1] such that $H([a_i, a_{i+1}] \times [b_j, b_{j+1}])$ is good. Let $\gamma_j : [0,1] \to X$ be the curve $\gamma_j(t) = H(t, b_j)$, in particular $\gamma_0 = \gamma$ and $\gamma_m = \gamma'$. To prove that $\rho(\gamma) = \rho(\gamma')$ it suffices to prove that $\rho(\gamma_j) = \rho(\gamma_{j+1})$ for any *j*. Consider the following diagram

2. THE EQUIVALENCE THEOREM

Since $H([a_i, a_{i+1}] \times [b_j, b_{j+1}])$ is good for any *i*, *j*, any small square diagram commutes. Furthermore $\rho(\gamma_j)$ is the composition of all the maps along the bottom and $\rho(\gamma_{j+1})$ is the composition of all the maps along the top, we conclude that $\rho(\gamma_j) = \rho(\gamma_{j+1})$.

In particular for $x_0 = x_1$ for any loop γ bases on x_0 we get a well defined linear map $\rho(\gamma) : \mathcal{L}_{x_0} \to \mathcal{L}_{x_0}$. Clearly the map

$$\rho: \pi(X, x_0) \to GL(\mathcal{L}_{x_0}) \cong GL(n, \mathbb{C}), \ \gamma \mapsto \rho(\gamma),$$

is a morphism of groups, and thus defines a representation of the fundamental group $\pi_1(X, x_0)$ with representation space \mathcal{L}_{x_0} .

(2) (*Representation* → *Local System*) Let ρ : π₁(X, x₀) → GL(n, C) be a representation of the fundamental group. Let F : X̃ → X be the universal covering of X. The fundamental group acts on X̃ by deck transformations. We can define a holomorphic vector bundle by

$$E = \tilde{X} \times \mathbb{C}^n / \sim,$$

where the relation \sim is given by

$$(\tilde{b}_1, v_1) \sim (\tilde{b}_2, v_2) \iff b_2 = \sigma(b_1), v_2 = \rho(\sigma^{-1})(v_1), \quad \sigma \in \pi_1(X, x_0).$$

In other words, *E* is the vector bundle associated the the principal bundle over *X* with structure group $\pi_1(X, x_0)$ by the representation ρ . Let $\mathcal{U} \subseteq X$ be an open subset such that $F^{-1}(\mathcal{U})$ is a disjoint union of open sets $W_j \subseteq \tilde{X}$ biholomorphic to \mathcal{U} . Let us denote by $F_j = F_{|W_j}$. Given any vector $v \in \mathbb{C}^n$, for any choice of *j* we have a local section

$$\bar{v}(z) = (F_i^{-1}(z), v), \, z \in \mathcal{U},$$

on \mathcal{U} . We call \bar{v} a constant section of the bundle *E*. We denote by \mathcal{L} the sheaf of locally constant section *E*. Clearly \mathcal{L} is a locally constant sheaf i.e. a local system.

EXAMPLE 2.3. Let $X = \Delta^* = \{z \in \mathbb{C} \mid 0 < |z| < r\}$, and suppose, for simplicity that we have scaled the variable so that r > 1. For $t_0 = 1 \in \Delta^*$ we have $\pi_1(\Delta^*, t_0) \cong \mathbb{Z}$, after choosing as generator a loop around the origin and oriented clockwise. Consider the representation

$$\rho: \pi_1(\Delta^*, t_0) \to GL(2, \mathbb{C}), \quad \rho(n) = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}.$$

Recalling the upper half plane *H* is the universal covering of Δ^* , we have $E \cong H \times \mathbb{C}^2 / \sim$.

2.2. CONCLUSIONS

2.1. Local Systems and Flat Bundles

In this section we establish a bijective correspondence

$$\left(\begin{array}{c} Local Systems on X\\ up to isomorphism \end{array}\right) \longleftrightarrow \left(\begin{array}{c} Flat Bundles on X\\ up to isomorphism \end{array}\right)$$

Suppose that $E \to X$ is a vector bundle associated to a local system \mathcal{L} . Then E admits a trivializing covering relative to which the transition function are constant. Let $\sigma_1, ..., \sigma_d$ be the coframe arising from the trivializing cover, since \mathcal{L} is a local system we can define a connection with connection forms $\theta_{i,j} = 0$, i.e.

$$\nabla(\sum f_i\sigma_i)=\sum df_i\otimes\sigma_i+\sum f_i\nabla\sigma_i=\sum df_i\otimes\sigma_i.$$

By definition there exists a trivializing cover for which the corresponding coframe consists of flat sections i.e. $\nabla \sigma_j = \sum \theta_{i,j} \otimes \sigma_j = 0$ for any j = 1, ..., d. In this way we associate a flat connection to a local system.

Conversely if $E \to X$ is a vector bundle with a flat connection ∇ . Then the transition function corresponding to covering by open sets with flat coframes must be constant. Indeed from $\sigma_j = \sum g_{i,j}\sigma_i$ we get $0 = \nabla \sigma_j = \sum (dg_{i,j} \otimes \sigma_i + g_{i,j} \nabla \sigma_i) = \sum dg_{i,j} \otimes \sigma_i$, so $dg_{i,j} = 0$ and $g_{i,j}$ is constant. Consequently we can define a local system of constant sections i.e. the flat sections.

2.2. Conclusions

Summarizing the results we have bijective correspondences

$$\left(\begin{array}{c} Flat \ Bundles \ on \ X \\ up \ to \ isomorphism \end{array}\right) \longleftrightarrow \left(\begin{array}{c} Local \ Systems \ on \ X \\ up \ to \ isomorphism \end{array}\right) \longleftrightarrow \left(\begin{array}{c} Representations \ of \ \pi_1(X) \\ up \ to \ isomorphism \end{array}\right) \leftrightarrow$$

that actually are equivalences between the following three categories

- (1) Local Systems over a connected, complex manifold *X*,
- (2) Finite dimensional representations of the fundamental group $\pi_1(X, x_0)$,
- (3) Holomorphic bundles $E \to X$ with a flat connection ∇ .

2.2.1. The Gauss-Manin Connection. Let $\varphi : \chi \to B$ be an analytic family of compact complex manifolds, where φ is a proper holomorphic submersion. By Erhesmann theorem χ is locally trivial as smooth manifold, and it is trivial if *B* is simply connected. Let $b_0 \in B$ be a point, and let $X_{b_0} = X = \varphi^{-1}(b_0)$ be the corresponding fiber. Consider the diffeomorphism

$$F: \chi \to B \times X_{\lambda}$$

and let $G = F^{-1}$ be its inverse. For any curve $\gamma : [0,1] \to B$ such that $\gamma(0) = b_0$ and $\gamma(1) = b_1$ we get a diffeomorphism $f_{\gamma} : X_{b_0} \to X_{b_1}$. This give rise to an isomorphism

$$f_{\gamma}^*: H^j(X_{b_1}, k) \to H^j(X_{b_0}, k),$$

where $k = \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$. Since these isomorphisms depends only on the homotopy class of γ we get a representation $\pi_1(B, b_0) \rightarrow End(H^j(X_{b_0}, k))$. We denote by $\mathbb{H}^j \rightarrow B$ the holomorphic vector bundle assiociated to this representation. The fiber of $\mathbb{H}^j \rightarrow B$ over $b \in B$ is isomorphic to $H^j(X_b, \mathbb{C})$, and the corresponding connection is called the *Gauss-Manin Connection*.

CHAPTER 3

Hodge Structures and Representations

In this chapter we state a bijective correspondence between

 $\left(\begin{array}{c} \textit{Rational Hodge Structures of weight k} \\ \textit{over a } \mathbb{Q} - \textit{vector space } H \end{array}\right) \leftrightsquigarrow \left(\begin{array}{c} \textit{Algebraic Representations on the} \\ \mathbb{R} - \textit{vector space } H_{\mathbb{R}} = H \otimes_{\mathbb{Q}} \mathbb{R} \end{array}\right).$

DEFINITION 3.1. A *rational Hodge structure* of weight *k* is a Q-vector space *H* with a direct sum decomposition

$$H_{\mathbb{C}} = H \otimes_{\mathbb{Q}} \mathbb{C} = \bigoplus_{p+q=k} H^{p,q},$$

such that $\overline{H^{p,q}} = H^{q,p}$.

PROPOSITION 3.2. There is a bijective correspondence between rational Hodge structures of weight k on a rational vector space H and algebraic representations $\rho : \mathbb{C}^* \to GL(H_{\mathbb{R}})$, where $H_{\mathbb{R}} = H \otimes_{\mathbb{Q}} \mathbb{R}$.

PROOF. Let $H_{\mathbb{C}} = \bigoplus_{p+q=k} H^{p,q}$ be a rational Hodge structure. For $\alpha = \sum \alpha^{p,q} \in H_{\mathbb{R}} \subseteq H_{\mathbb{C}}$ we define

$$\rho(z)(\alpha) = \sum (z^p \overline{z}^q) \alpha^{p,q}.$$

Note that $\rho(zw)(\alpha^{p,q}) = ((zw)^p \overline{zw}^q) \alpha^{p,q} = (z^p \overline{z}^q)(w^p \overline{w}^q) \alpha^{p,q} = (\rho(z) \circ \rho(w)) \alpha^{p,q}$. Furthermore if $\alpha \in H_{\mathbb{R}}$ then $\rho(z)\alpha$ is still real. So the map $\rho : \mathbb{C}^* \to GL(H_{\mathbb{R}})$ is well define and it is a representation. Clearly it is algebraic.

Conversely suppose to have a representation $\rho : \mathbb{C}^* \to GL(H_{\mathbb{R}})$. Let $\rho_{\mathbb{C}} : \mathbb{C}^* \to GL(H_{\mathbb{C}})$ be the \mathbb{C} -linear extension of ρ , and consider the spaces

$$H^{p,q} = \{ v \in H_{\mathbb{C}} \mid \rho_{\mathbb{C}}(z)(v) = (z^p \overline{z}^q) v, \, \forall \, z \in \mathbb{C}^* \}.$$

Since \mathbb{C}^* is abelian, the representation $\rho_{\mathbb{C}}$ splits into a direct sum of one-dimensional representations $r_i : \mathbb{C}^* \to \mathbb{C}^*$. To show that $H_{\mathbb{C}} = \bigoplus H^{p,q}$, we have to argue that every one-dimensional representation r_i that might occur is of the form $r_i(z) = z^p \overline{z}^q$ with p + q = k. Now the hyphotesis that ρ is algebraic comes in. We can write z = x + iy, one can identify \mathbb{C}^* with the subgroup of $GL(2,\mathbb{R})$ of all matrices of the form $\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$. A representation $\rho : \mathbb{C}^* \to GL(H_{\mathbb{R}})$ is algebraic if $\rho \begin{pmatrix} x & y \\ -y & x \end{pmatrix}$ is a matrix whose entries are polynomials in x, y, and the inverse of the determinant $\frac{1}{x^2+y^2}$. Hence $r_i(z)$ must be a polynomial in z, \overline{z} , and $z\overline{z}$, henceforth of the form $z^p \overline{z}^q$ for some p, q with p + q = k.