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Introduction

We show how to associate a flat connection over a vector bundle E on a con-
nected complex manifold X to a local system on X. Furthermore we associate to a
representation of the fundamental group 711 (X, xp) a local system. Then we close
the circle showing a bijective correspondence between local system, representa-
tions of the fundamental group and flat connections. Finally we show that there
is a bijective correspondence between Hodge structure on a Q-vector space H and
representations of C* over Hr = H ®¢g R.



CHAPTER 1

Local Systems, Representations and Flat Vector
Bundles

Let X be a connected complex manifold.

DEFINITION 1.1. A local system on X is a locally constant sheaf 7 on X, i.e.
for any x € X there is an open neighborhood Uy of x such that 7, is the constant
sheaf.

Recall that a sheaf £ on X is constant if for any x € X the stalk F is isomorphic
to C" for a fixed n.
Let £ — X be a local system on X, and fix a base point xg € X. Let

71101 = X, 7(0) = xo, (1) = x1,
be a curve in X. The pull-back 7* L to [0, 1] is locally constant and hence constant.
In this way we get a C-vector space isomorphism

fy+ Lxg = Lay,
which depends only on the homotopy class of . If we take a loop based at xo we
get a map
p:m(X,x0) = GL(Ly,) = GL(n,C),
that is a group homomorphism and hence defines a representation of 71 (X, x() on
X0

1.1. Flat Bundles

Let E — X be a holomorphic vector bundle. A holomorphic connection on E
is a C-linear map

vV Op(U) — O1(U) ® Op(U) = O (U),
where U is an open subset of X, and such that
V(f-0)=df®oc+f-Vo, feO(U),ce O(U).

If 09, ..., 04 is a local holomorphic coframe of O (U), we have
d
V(T] = 2 91‘,]‘0'1',
i=1

the holomorphic forms 6; ; € Q! (U) are called connection forms.

DEFINITION 1.2. Let E — X be a holomorphic vector bundle with a holo-
morphic connection V. A section ¢ € Og(U) is said to be flat if Vo = 0. The
connection V is said to be flat if there exists a trivializing cover for E such that the
corresponding coframe consists of flat section.
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6 1. LOCAL SYSTEMS, REPRESENTATIONS AND FLAT VECTOR BUNDLES

1.1.1. Locally free Shaves and Vector Bundles. Let E — X be a holomorphic
vector bundle of rank n on a complex manifold X. For any open subset U C X we
can consider the Ox(U)-module T'(U, E) of holomorphic section of E on U. The
assignment U — T'(U, E) gives a sheaf of Ox-module on X that is locally free of
rank 7.

Conversely let F be a locally free sheaf of rank n on X. Let {U;} be an open
cover of X on which F trivializes. For each non trivial intersection U; N U = Uj;
we have two isomorphisms Fy;, — Of" and Fy;, — OY" and by restriction two
different isomorphisms g; : Fy, — OY" and gj : Fu; — Of". Then we have an

automorphism g;; = gig; Lof Fu; = O??Fu- . Then we can identify g; ; with an
3 i

n X n matrix with regular functions as entries. We construct a vector bundle
E = U LI,- x C"/ ~,

where (x,0) ~ (y,w) <= x =y € U;j, w = g;(x)(v). Then E is a vector bundle
of rank n on X. Note that the transition functions of E arise from a coframe of
F. We have established the following bijective correspondence that is actually an
equivalence of categories.

Rank n Vector Bundle on X — Locally freeofranknon X
up to isomorphism up to isomorphism ’



CHAPTER 2

The Equivalence Theorem

Our aim is to prove that there is a bijective correspondence

Local Systems on X — Representations of 1t1(X)
up to isomorphism up to isomorphism ’

A subset K of X is said to be good for the sheaf L if it is connected and there is an
open subset U containing K such that 77, is constant.

LEMMA 2.1. Let K be a good set for L, and let x1, ..., x, € K be points. Then there
is a natural isomorphism Ly, — Ly, for any i,j = 1,...,n. Furthermore for any i, j, k the
composition Ly, — Ex]. — Ly, coincides with Ly, — Ly, .

PROOF. Let U be an open subset containing K on which £ is constant. Then
the natural maps £(U) — Ly, s — sy, are all isomorphisms. So we get isomor-
phisms L, — L(U) — Ly, that clearly are compatible. [ )

THEOREM 2.2. There is a bijective correspondence between the set of local systems
on X up to isomorphism and the set of representations of 7t1(X) up to isomorphism.

PROOF. We dived the proof in two steps.

(1) (Local System — Representation) Let v : [0,1] — X be a curve, y(0) =
xo, 7(1) = x1. We can cover X by good open sets Uy, ..., Uy such that each
U;NU| # @ for any i,j. Furthermore we can find a partition 0 < a9 <
1 < ... < ay < 1such that y([a;,a;11]) C U;. Then for any i the pullback
of L to [a;,a;41] is locally constant and hence constant. So we get an
isomorphism L,y — L, (,,,)- By composing these isomorphisms we
get an p, isomorphism £, ) — L (1)

The isomorphism p,, appears to depend from the partition 0 < ap <
a; < .. < ay < 1. Butif we add a new point b say between a; and
a;41, by lemma 2.1 the composition £,, — L, — L, , coincides with
Ly, — Lg,, . So our construction does not change.

Suppose now that y and v are homotopic curves in X, and let H : [0, 1] x
[0,1] — X be an homotopy. Then H(t,0) = (t) and H(t,1) = (t). Let
0=a; <..<a,=1and0 = by,..., by = 1be partitions of [0, 1] such that
H([a;, a;41] X [bj,bj11]) is good. Let v; : [0,1] — X be the curve ;(t) =
H(t,b;), in particular 79 = y and v, = 7. To prove that p(y) = p(v) it
suffices to prove that p(y;) = p(7;41) for any j. Consider the following
diagram
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Libop.) = £|H(af,bjm - £|H(af,hj+1> = e = Linapy,
| |

Linop) = LiH@p) = LH@b) = e = Linay)

Since H([a;, a;11] X [bj,bj;1]) is good for any i,j, any small square
diagram commutes. Furthermore p(7;) is the composition of all the maps
along the bottom and p(7;1) is the composition of all the maps along the
top, we conclude that p(7;) = p(7j41)-

In particular for xg = x; for any loop <y bases on xo we get a well defined
linear map p(7) : Ly, — Lx,. Clearly the map

p:7t(X,x0) — GL(Ly,) = GL(n,C), v+ p(7),

is a morphism of groups, and thus defines a representation of the funda-
mental group 711 (X, xo) with representation space Ly,.

(2) (Representation — Local System) Let p : m1(X,x9) — GL(n,C) be a rep-
resentation of the fundamental group. Let F : X — X be the universal
covering of X. The fundamental group acts on X by deck transforma-

tions. We can define a holomorphic vector bundle by
E=XxC"/ ~,
where the relation ~ is given by

(by,v1) ~ (b2, 02) <= by = 0(b1), v2 = p(c ) (v1), 0 € m(X,xp).

In other words, E is the vector bundle associated the the principal bundle
over X with structure group 711 (X, xo) by the representation p. Letif C X
be an open subset such that F~!({) is a disjoint union of open sets W; C
X biholomorphic to U. Let us denote by F; = F W Given any vector
v € C", for any choice of j we have a local section

o(z) = (F71(2),0), z € U,

on U. We call 7 a constant section of the bundle E. We denote by L the
sheaf of locally constant section E. Clearly £ is a locally constant sheaf
i.e. a local system.

)

EXAMPLE 2.3. Let X = A* = {z € C|0 < |z| < r}, and suppose, for sim-
plicity that we have scaled the variable so that » > 1. For t) = 1 € A* we have
11 (A%, tg) = Z, after choosing as generator a loop around the origin and oriented
clockwise. Consider the representation

pim(s't) = GL2,C), o =( g 1 ).

Recalling the upper half plane H is the universal covering of A*, we have E =
HxC2/ ~.
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2.1. Local Systems and Flat Bundles

In this section we establish a bijective correspondence

Local Systems on X — Flat Bundles on X
up to isomorphism up to isomorphism

Suppose that E — X is a vector bundle associated to a local system £. Then E
admits a trivializing covering relative to which the transition function are constant.
Let 04, ...,04 be the coframe arising from the trivializing cover, since £ is a local
system we can define a connection with connection forms 6;; = 0, i.e.

V(O _fior) =Y dfi®oi+) fiVoi =) _dfi®o;.

By definition there exists a trivializing cover for which the corresponding coframe
consists of flat sectionsi.e. Vo; =} 6;; ® 0j = 0 forany j = 1,...,d. In this way we
associate a flat connection to a local system.

Conversely if E — X is a vector bundle with a flat connection V. Then the tran-
sition function corresponding to covering by open sets with flat coframes must be
constant. Indeed from ¢; = Y g; ;07 we get 0 = Vo; = Y (dg;; ® 0; + g;jV0;) =
Ydgij @0y, s0dg;; = 0and g;; is constant. Consequently we can define a local
system of constant sections i.e. the flat sections.

2.2. Conclusions

Summarizing the results we have bijective correspondences

Flat Bundleson X\~ ( Local Systemson X \ _ ( Representationsof (X)
up to isomorphism up to isomorphism up to isomorphism !

that actually are equivalences between the following three categories
(1) Local Systems over a connected, complex manifold X,
(2) Finite dimensional representations of the fundamental group 7 (X, x¢),
(3) Holomorphic bundles E — X with a flat connection V.

2.2.1. The Gauss-Manin Connection. Let ¢ : x — B be an analytic family
of compact complex manifolds, where ¢ is a proper holomorphic submersion. By
Erhesmann theorem y is locally trivial as smooth manifold, and it is trivial if B
is simply connected. Let by € B be a point, and let X, = X = ¢~ (bp) be the
corresponding fiber. Consider the diffeomorphism

F:x —BxX,
and let G = F~! be its inverse. For any curve 7 : [0,1] — B such that 7(0) = by
and y(1) = b; we get a diffeomorphism f, : X; — X . This give rise to an
isomorphism ' ‘
fy s H(Xp,, k) — H (X, k),
where k = Z,Q, R, C. Since these isomorphisms depends only on the homotopy
class of v we get a representation 711(B,by) — End(H/(Xy,,k)). We denote by
H/ — B the holomorphic vector bundle assiociated to this representation. The

fiber of H/ — B over b € B is isomorphic to H/(X},C), and the corresponding
connection is called the Gauss-Manin Connection.



CHAPTER 3

Hodge Structures and Representations

In this chapter we state a bijective correspondence between

Rational Hodge Structures of weight k — Algebraic Representations on the
over a Q — vector space H R — vector space HR = H ®g R

DEFINITION 3.1. A rational Hodge structure of weight k is a Q-vector space H
with a direct sum decomposition
He =H®qoC=  H",
pra=k
such that HP4 = H7P.
PROPOSITION 3.2. There is a bijective correspondence between rational Hodge struc-

tures of weight k on a rational vector space H and algebraic representations p : C* —
GL(HR), where HR = H ®q R.

PROOF. Let Hc = @y gk HP# be a rational Hodge structure. Fora =) a7 €

HR C H¢ we define
p(z)(w) = Y (2PZ7)aPA.

Note that p(zw)(aP7) = ((zw)PzwT)aP1 = (zPZ7)(wP@T)al1 = (p(z) o p(w))aPA.
Furthermore if « € HR then p(z)a is still real. So the map p : C* — GL(HR) is
well define and it is a representation. Clearly it is algebraic.

Conversely suppose to have a representation p : C* — GL(HR). Let pc : C* —
GL(Hc) be the C-linear extension of p, and consider the spaces

HP1 = {v € Hc | pc(z)(v) = (z2PZ7)v, Vz € C*}.
Since C* is abelian, the representation p¢ splits into a direct sum of one-dimensional
representations r; : C* — C*. To show that Hc = @ H", we have to ar-
gue that every one-dimensional representation r; that might occur is of the form
ri(z) = zPz7 with p+q = k. Now the hyphotesis that p is algebraic comes in.
We can write z = x + iy, one can identify C* with the subgroup of GL(2,R) of

all matrices of the form ( _xy g ) A representation p : C* — GL(HR) is al-

gebraic if p ( _xy Z ) is a matrix whose entries are polynomials in x, y, and the

inverse of the determinant —1—. Hence r;(z) must be a polynomial in z,Z, and 2z,
2y? i

henceforth of the form zPz7 for some p,q with p + g = k. [ )
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