Some Connections between Representation Theory and Complex Geometry

Alex Massarenti
SISSA, VIA BONOMEA 265, 34136 TRIESTE, ITALY
E-mail address: alex.massarenti@sissa.it

Contents

Introduction 4
Chapter 1. Local Systems, Representations and Flat Vector Bundles 5
1.1. Flat Bundles 5
1.1.1. Locally free Shaves and Vector Bundles 6
Chapter 2. The Equivalence Theorem 7
2.1. Local Systems and Flat Bundles 9
2.2. Conclusions 9
2.2.1. The Gauss-Manin Connection 9
Chapter 3. Hodge Structures and Representations 10

Introduction

We show how to associate a flat connection over a vector bundle E on a connected complex manifold X to a local system on X. Furthermore we associate to a representation of the fundamental group $\pi_{1}\left(X, x_{0}\right)$ a local system. Then we close the circle showing a bijective correspondence between local system, representations of the fundamental group and flat connections. Finally we show that there is a bijective correspondence between Hodge structure on a Q-vector space H and representations of \mathbb{C}^{*} over $H_{\mathbb{R}}=H \otimes_{\mathbb{Q}} \mathbb{R}$.

CHAPTER 1

Local Systems, Representations and Flat Vector Bundles

Let X be a connected complex manifold.
DEFINITION 1.1. A local system on X is a locally constant sheaf \mathcal{F} on X, i.e. for any $x \in X$ there is an open neighborhood \mathcal{U}_{x} of x such that $\mathcal{F}_{\mid \mathcal{U}_{x}}$ is the constant sheaf.

Recall that a sheaf \mathcal{E} on X is constant if for any $x \in X$ the stalk \mathcal{F}_{x} is isomorphic to \mathbb{C}^{n} for a fixed n.
Let $\mathcal{L} \rightarrow X$ be a local system on X, and fix a base point $x_{0} \in X$. Let

$$
\gamma:[0,1] \rightarrow X, \gamma(0)=x_{0}, \gamma(1)=x_{1}
$$

be a curve in X. The pull-back $\gamma^{*} \mathcal{L}$ to $[0,1]$ is locally constant and hence constant. In this way we get a \mathbb{C}-vector space isomorphism

$$
f_{\gamma}: \mathcal{L}_{x_{0}} \rightarrow \mathcal{L}_{x_{1}}
$$

which depends only on the homotopy class of γ. If we take a loop based at x_{0} we get a map

$$
\rho: \pi_{1}\left(X, x_{0}\right) \rightarrow G L\left(\mathcal{L}_{x_{0}}\right) \cong G L(n, \mathbb{C}),
$$

that is a group homomorphism and hence defines a representation of $\pi_{1}\left(X, x_{0}\right)$ on $\mathcal{L}_{x_{0}}$.

1.1. Flat Bundles

Let $E \rightarrow X$ be a holomorphic vector bundle. A holomorphic connection on E is a \mathbb{C}-linear map

$$
\nabla: \mathcal{O}_{E}(U) \rightarrow \Omega^{1}(U) \otimes \mathcal{O}_{E}(U)=\Omega_{E}^{1}(U)
$$

where U is an open subset of X, and such that

$$
\nabla(f \cdot \sigma)=d f \otimes \sigma+f \cdot \nabla \sigma, \quad f \in \mathcal{O}(U), \sigma \in \mathcal{O}_{E}(U)
$$

If $\sigma_{1}, \ldots, \sigma_{d}$ is a local holomorphic coframe of $\mathcal{O}_{E}(U)$, we have

$$
\nabla \sigma_{j}=\sum_{i=1}^{d} \theta_{i, j} \sigma_{i}
$$

the holomorphic forms $\theta_{i, j} \in \Omega^{1}(U)$ are called connection forms.
DEFINITION 1.2. Let $E \rightarrow X$ be a holomorphic vector bundle with a holomorphic connection ∇. A section $\sigma \in \mathcal{O}_{E}(U)$ is said to be flat if $\nabla \sigma=0$. The connection ∇ is said to be flat if there exists a trivializing cover for E such that the corresponding coframe consists of flat section.
1.1.1. Locally free Shaves and Vector Bundles. Let $E \rightarrow X$ be a holomorphic vector bundle of rank n on a complex manifold X. For any open subset $U \subseteq X$ we can consider the $\mathcal{O}_{X}(U)$-module $\Gamma(U, E)$ of holomorphic section of E on U. The assignment $U \mapsto \Gamma(U, E)$ gives a sheaf of \mathcal{O}_{X}-module on X that is locally free of rank n.
Conversely let \mathcal{F} be a locally free sheaf of rank n on X. Let $\left\{U_{i}\right\}$ be an open cover of X on which \mathcal{F} trivializes. For each non trivial intersection $U_{i} \cap U_{j}=U_{i, j}$ we have two isomorphisms $\mathcal{F}_{U_{i}} \rightarrow \mathcal{O}_{X}^{\oplus n}$ and $\mathcal{F}_{U_{i}} \rightarrow \mathcal{O}_{X}^{\oplus n}$ and by restriction two different isomorphisms $g_{i}: \mathcal{F}_{U_{i}} \rightarrow \mathcal{O}_{X}^{\oplus n}$ and $g_{j}: \mathcal{F}_{U_{j}} \rightarrow \mathcal{O}_{X}^{\oplus n}$. Then we have an automorphism $g_{i, j}=g_{j} g_{i}^{-1}$ of $\mathcal{F}_{U_{i, j}} \cong \mathcal{O}_{X \mid U_{i, j}}^{\oplus n}$. Then we can identify $g_{i, j}$ with an $n \times n$ matrix with regular functions as entries. We construct a vector bundle

$$
E=\bigcup U_{i} \times \mathbb{C}^{n} / \sim,
$$

where $(x, v) \sim(y, w) \Longleftrightarrow x=y \in U_{i, j}, w=g_{i, j}(x)(v)$. Then E is a vector bundle of rank n on X. Note that the transition functions of E arise from a coframe of \mathcal{F}. We have established the following bijective correspondence that is actually an equivalence of categories.

$$
\binom{\text { Rank } n \text { Vector Bundle on } X}{\text { up to isomorphism }} \leftrightarrow \leadsto\binom{\text { Locally free ofrank n on } X}{\text { up to isomorphism }} .
$$

CHAPTER 2

The Equivalence Theorem

Our aim is to prove that there is a bijective correspondence

$$
\binom{\text { Local Systems on } X}{\text { up to isomorphism }} \leftrightarrow \rightsquigarrow\binom{\text { Representations of } \pi_{1}(X)}{\text { up to isomorphism }} .
$$

A subset K of X is said to be good for the sheaf \mathcal{L} if it is connected and there is an open subset \mathcal{U} containing K such that $\mathcal{F}_{\mathcal{U}}$ is constant.

Lemma 2.1. Let K be a good set for \mathcal{L}, and let $x_{1}, \ldots, x_{n} \in K$ be points. Then there is a natural isomorphism $\mathcal{L}_{x_{i}} \rightarrow \mathcal{L}_{x_{j}}$ for any $i, j=1, \ldots, n$. Furthermore for any i, j, k the composition $\mathcal{L}_{x_{i}} \rightarrow \mathcal{L}_{x_{j}} \rightarrow \mathcal{L}_{x_{k}}$ coincides with $\mathcal{L}_{x_{i}} \rightarrow \mathcal{L}_{x_{k}}$.

Proof. Let \mathcal{U} be an open subset containing K on which \mathcal{L} is constant. Then the natural maps $\mathcal{L}(\mathcal{U}) \rightarrow \mathcal{L}_{x_{i}}, s \rightarrow s_{x_{i}}$ are all isomorphisms. So we get isomorphisms $\mathcal{L}_{x_{i}} \rightarrow \mathcal{L}(\mathcal{U}) \rightarrow \mathcal{L}_{x_{j}}$ that clearly are compatible.

THEOREM 2.2. There is a bijective correspondence between the set of local systems on X up to isomorphism and the set of representations of $\pi_{1}(X)$ up to isomorphism.

Proof. We dived the proof in two steps.
(1) (Local System \rightarrow Representation) Let $\gamma:[0,1] \rightarrow X$ be a curve, $\gamma(0)=$ $x_{0}, \gamma(1)=x_{1}$. We can cover X by good open sets $\mathcal{U}_{0}, \ldots, \mathcal{U}_{n}$ such that each $\mathcal{U}_{i} \cap \mathcal{U}_{\mid} \neq \varnothing$ for any i, j. Furthermore we can find a partition $0 \leq a_{0}<$ $a_{1}<\ldots<a_{n} \leq 1$ such that $\gamma\left(\left[a_{i}, a_{i+1}\right]\right) \subseteq \mathcal{U}_{i}$. Then for any i the pullback of \mathcal{L} to $\left[a_{i}, a_{i+1}\right]$ is locally constant and hence constant. So we get an isomorphism $\mathcal{L}_{\gamma\left(a_{i}\right)} \rightarrow \mathcal{L}_{\gamma\left(a_{i+1}\right)}$. By composing these isomorphisms we get an ρ_{γ} isomorphism $\mathcal{L}_{\gamma(0)} \rightarrow \mathcal{L}_{\gamma(1)}$.
The isomorphism ρ_{γ} appears to depend from the partition $0 \leq a_{0}<$ $a_{1}<\ldots<a_{n} \leq 1$. But if we add a new point b say between a_{i} and a_{i+1}, by lemma 2.1 the composition $\mathcal{L}_{a_{i}} \rightarrow \mathcal{L}_{b} \rightarrow \mathcal{L}_{a_{i+1}}$ coincides with $\mathcal{L}_{a_{i}} \rightarrow \mathcal{L}_{a_{i+1}}$. So our construction does not change.
Suppose now that γ and γ^{\prime} are homotopic curves in X, and let $H:[0,1] \times$ $[0,1] \rightarrow X$ be an homotopy. Then $H(t, 0)=\gamma(t)$ and $H(t, 1)=\gamma^{\prime}(t)$. Let $0=a_{1}<\ldots<a_{n}=1$ and $0=b_{1}, \ldots, b_{m}=1$ be partitions of $[0,1]$ such that $H\left(\left[a_{i}, a_{i+1}\right] \times\left[b_{j}, b_{j+1}\right]\right)$ is good. Let $\gamma_{j}:[0,1] \rightarrow X$ be the curve $\gamma_{j}(t)=$ $H\left(t, b_{j}\right)$, in particular $\gamma_{0}=\gamma$ and $\gamma_{m}=\gamma^{\prime}$. To prove that $\rho(\gamma)=\rho\left(\gamma^{\prime}\right)$ it suffices to prove that $\rho\left(\gamma_{j}\right)=\rho\left(\gamma_{j+1}\right)$ for any j. Consider the following diagram

$$
\left.\right)
$$

Since $H\left(\left[a_{i}, a_{i+1}\right] \times\left[b_{j}, b_{j+1}\right]\right)$ is good for any i, j, any small square diagram commutes. Furthermore $\rho\left(\gamma_{j}\right)$ is the composition of all the maps along the bottom and $\rho\left(\gamma_{j+1}\right)$ is the composition of all the maps along the top, we conclude that $\rho\left(\gamma_{j}\right)=\rho\left(\gamma_{j+1}\right)$.
In particular for $x_{0}=x_{1}$ for any loop γ bases on x_{0} we get a well defined linear map $\rho(\gamma): \mathcal{L}_{x_{0}} \rightarrow \mathcal{L}_{x_{0}}$. Clearly the map

$$
\rho: \pi\left(X, x_{0}\right) \rightarrow G L\left(\mathcal{L}_{x_{0}}\right) \cong G L(n, \mathbb{C}), \gamma \mapsto \rho(\gamma)
$$

is a morphism of groups, and thus defines a representation of the fundamental group $\pi_{1}\left(X, x_{0}\right)$ with representation space $\mathcal{L}_{x_{0}}$.
(2) (Representation \rightarrow Local System) Let $\rho: \pi_{1}\left(X, x_{0}\right) \rightarrow G L(n, \mathbb{C})$ be a representation of the fundamental group. Let $F: \tilde{X} \rightarrow X$ be the universal covering of X. The fundamental group acts on \tilde{X} by deck transformations. We can define a holomorphic vector bundle by

$$
E=\tilde{X} \times \mathbb{C}^{n} / \sim,
$$

where the relation \sim is given by

$$
\left(\tilde{b}_{1}, v_{1}\right) \sim\left(\tilde{b}_{2}, v_{2}\right) \Longleftrightarrow b_{2}=\sigma\left(b_{1}\right), v_{2}=\rho\left(\sigma^{-1}\right)\left(v_{1}\right), \quad \sigma \in \pi_{1}\left(X, x_{0}\right)
$$

In other words, E is the vector bundle associated the the principal bundle over X with structure group $\pi_{1}\left(X, x_{0}\right)$ by the representation ρ. Let $\mathcal{U} \subseteq X$ be an open subset such that $F^{-1}(\mathcal{U})$ is a disjoint union of open sets $W_{j} \subseteq$ \tilde{X} biholomorphic to \mathcal{U}. Let us denote by $F_{j}=F_{\mid W_{j}}$. Given any vector $v \in \mathbb{C}^{n}$, for any choice of j we have a local section

$$
\bar{v}(z)=\left(F_{j}^{-1}(z), v\right), z \in \mathcal{U}
$$

on \mathcal{U}. We call \bar{v} a constant section of the bundle E. We denote by \mathcal{L} the sheaf of locally constant section E. Clearly \mathcal{L} is a locally constant sheaf i.e. a local system.

EXAMPLE 2.3. Let $X=\Delta^{*}=\{z \in \mathbb{C}|0<|z|<r\}$, and suppose, for simplicity that we have scaled the variable so that $r>1$. For $t_{0}=1 \in \Delta^{*}$ we have $\pi_{1}\left(\Delta^{*}, t_{0}\right) \cong \mathbb{Z}$, after choosing as generator a loop around the origin and oriented clockwise. Consider the representation

$$
\rho: \pi_{1}\left(\Delta^{*}, t_{0}\right) \rightarrow G L(2, \mathbb{C}), \quad \rho(n)=\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right) .
$$

Recalling the upper half plane H is the universal covering of Δ^{*}, we have $E \cong$ $H \times \mathbb{C}^{2} / \sim$.

2.1. Local Systems and Flat Bundles

In this section we establish a bijective correspondence

$$
\binom{\text { Local Systems on X }}{\text { up to isomorphism }} \leftrightarrow \leadsto\binom{\text { Flat Bundles on X }}{\text { up to isomorphism }} .
$$

Suppose that $E \rightarrow X$ is a vector bundle associated to a local system \mathcal{L}. Then E admits a trivializing covering relative to which the transition function are constant. Let $\sigma_{1}, \ldots, \sigma_{d}$ be the coframe arising from the trivializing cover, since \mathcal{L} is a local system we can define a connection with connection forms $\theta_{i, j}=0$, i.e.

$$
\nabla\left(\sum f_{i} \sigma_{i}\right)=\sum d f_{i} \otimes \sigma_{i}+\sum f_{i} \nabla \sigma_{i}=\sum d f_{i} \otimes \sigma_{i}
$$

By definition there exists a trivializing cover for which the corresponding coframe consists of flat sections i.e. $\nabla \sigma_{j}=\sum \theta_{i, j} \otimes \sigma_{j}=0$ for any $j=1, \ldots, d$. In this way we associate a flat connection to a local system.
Conversely if $E \rightarrow X$ is a vector bundle with a flat connection ∇. Then the transition function corresponding to covering by open sets with flat coframes must be constant. Indeed from $\sigma_{j}=\sum g_{i, j} \sigma_{i}$ we get $0=\nabla \sigma_{j}=\sum\left(d g_{i, j} \otimes \sigma_{i}+g_{i, j} \nabla \sigma_{i}\right)=$ $\sum d g_{i, j} \otimes \sigma_{i}$, so $d g_{i, j}=0$ and $g_{i, j}$ is constant. Consequently we can define a local system of constant sections i.e. the flat sections.

2.2. Conclusions

Summarizing the results we have bijective correspondences

$$
\binom{\text { Flat Bundles on } X}{\text { up to isomorphism }} \leftrightarrow\binom{\text { Local Systems on } X}{\text { up to isomorphism }} \longleftrightarrow \rightsquigarrow\binom{\text { Representations of } \pi_{1}(X)}{\text { up to isomorphism }}
$$

that actually are equivalences between the following three categories
(1) Local Systems over a connected, complex manifold X,
(2) Finite dimensional representations of the fundamental group $\pi_{1}\left(X, x_{0}\right)$,
(3) Holomorphic bundles $E \rightarrow X$ with a flat connection ∇.
2.2.1. The Gauss-Manin Connection. Let $\varphi: \chi \rightarrow B$ be an analytic family of compact complex manifolds, where φ is a proper holomorphic submersion. By Erhesmann theorem χ is locally trivial as smooth manifold, and it is trivial if B is simply connected. Let $b_{0} \in B$ be a point, and let $X_{b_{0}}=X=\varphi^{-1}\left(b_{0}\right)$ be the corresponding fiber. Consider the diffeomorphism

$$
F: \chi \rightarrow B \times X
$$

and let $G=F^{-1}$ be its inverse. For any curve $\gamma:[0,1] \rightarrow B$ such that $\gamma(0)=b_{0}$ and $\gamma(1)=b_{1}$ we get a diffeomorphism $f_{\gamma}: X_{b_{0}} \rightarrow X_{b_{1}}$. This give rise to an isomorphism

$$
f_{\gamma}^{*}: H^{j}\left(X_{b_{1}}, k\right) \rightarrow H^{j}\left(X_{b_{0}}, k\right)
$$

where $k=\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$. Since these isomorphisms depends only on the homotopy class of γ we get a representation $\pi_{1}\left(B, b_{0}\right) \rightarrow \operatorname{End}\left(H^{j}\left(X_{b_{0}}, k\right)\right)$. We denote by $\mathbb{H}^{j} \rightarrow B$ the holomorphic vector bundle assiociated to this representation. The fiber of $\mathbb{H}^{j} \rightarrow B$ over $b \in B$ is isomorphic to $H^{j}\left(X_{b}, \mathbb{C}\right)$, and the corresponding connection is called the Gauss-Manin Connection.

CHAPTER 3

Hodge Structures and Representations

In this chapter we state a bijective correspondence between
$\binom{$ Rational Hodge Structures of weight $k}{$ over $a \mathbb{Q}$ - vector space $H} \leadsto\binom{$ Algebraic Representations on the }{\mathbb{R}-vector space $H_{\mathbb{R}}=H \otimes_{\mathbb{Q}} \mathbb{R}}$.
Definition 3.1. A rational Hodge structure of weight k is a \mathbb{Q}-vector space H with a direct sum decomposition

$$
H_{\mathbb{C}}=H \otimes_{\mathbb{Q}} \mathbb{C}=\bigoplus_{p+q=k} H^{p, q},
$$

such that $\overline{H^{p, q}}=H^{q, p}$.
Proposition 3.2. There is a bijective correspondence between rational Hodge structures of weight k on a rational vector space H and algebraic representations $\rho: \mathbb{C}^{*} \rightarrow$ $G L\left(H_{\mathbb{R}}\right)$, where $H_{\mathbb{R}}=H \otimes_{\mathbb{Q}} \mathbb{R}$.

Proof. Let $H_{\mathbb{C}}=\bigoplus_{p+q=k} H^{p, q}$ be a rational Hodge structure. For $\alpha=\sum \alpha^{p, q} \in$ $H_{\mathbb{R}} \subseteq H_{\mathbb{C}}$ we define

$$
\rho(z)(\alpha)=\sum\left(z^{p} \bar{z}^{q}\right) \alpha^{p, q} .
$$

Note that $\rho(z w)\left(\alpha^{p, q}\right)=\left((z w)^{p} \overline{z w^{q}}\right) \alpha^{p, q}=\left(z^{p} \bar{z}^{q}\right)\left(w^{p} \bar{w}^{q}\right) \alpha^{p, q}=(\rho(z) \circ \rho(w)) \alpha^{p, q}$. Furthermore if $\alpha \in H_{\mathbb{R}}$ then $\rho(z) \alpha$ is still real. So the map $\rho: \mathbb{C}^{*} \rightarrow G L\left(H_{\mathbb{R}}\right)$ is well define and it is a representation. Clearly it is algebraic.
Conversely suppose to have a representation $\rho: \mathbb{C}^{*} \rightarrow G L\left(H_{\mathbb{R}}\right)$. Let $\rho_{\mathbb{C}}: \mathbb{C}^{*} \rightarrow$ $G L\left(H_{\mathbb{C}}\right)$ be the \mathbb{C}-linear extension of ρ, and consider the spaces

$$
H^{p, q}=\left\{v \in H_{\mathrm{C}} \mid \rho_{\mathrm{C}}(z)(v)=\left(z^{p} \bar{z}^{q}\right) v, \forall z \in \mathbb{C}^{*}\right\} .
$$

Since \mathbb{C}^{*} is abelian, the representation $\rho_{\mathbb{C}}$ splits into a direct sum of one-dimensional representations $r_{i}: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$. To show that $H_{C}=\bigoplus H^{p, q}$, we have to argue that every one-dimensional representation r_{i} that might occur is of the form $r_{i}(z)=z^{p} \bar{z}^{q}$ with $p+q=k$. Now the hyphotesis that ρ is algebraic comes in. We can write $z=x+i y$, one can identify \mathbb{C}^{*} with the subgroup of $G L(2, \mathbb{R})$ of all matrices of the form $\left(\begin{array}{cc}x & y \\ -y & x\end{array}\right)$. A representation $\rho: \mathbb{C}^{*} \rightarrow G L\left(H_{\mathbb{R}}\right)$ is algebraic if $\rho\left(\begin{array}{cc}x & y \\ -y & x\end{array}\right)$ is a matrix whose entries are polynomials in x, y, and the inverse of the determinant $\frac{1}{x^{2}+y^{2}}$. Hence $r_{i}(z)$ must be a polynomial in z, \bar{z}, and $z \bar{z}$, henceforth of the form $z^{p} \bar{z}^{q}$ for some p, q with $p+q=k$.

